Skip to content

139. 单词拆分

题目描述

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

 

示例 1:

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。

示例 2:

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
     注意,你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

 

提示:

  • 1 <= s.length <= 300
  • 1 <= wordDict.length <= 1000
  • 1 <= wordDict[i].length <= 20
  • swordDict[i] 仅由小写英文字母组成
  • wordDict 中的所有字符串 互不相同

方法一:哈希表 + 动态规划

我们定义 f[i] 表示字符串 s 的前 i 个字符能否拆分成 wordDict 中的单词,初始时 f[0]=true,其余为 false。答案为 f[n]

考虑 f[i],如果存在 j[0,i) 使得 f[j]s[j:i]wordDict,则 f[i]=true。为了优化效率,我们可以使用哈希表存储 wordDict 中的单词,这样可以快速判断 s[j:i] 是否在 wordDict 中。

时间复杂度 O(n3),空间复杂度 O(n)。其中 n 为字符串 s 的长度。

java
class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        Set<String> words = new HashSet<>(wordDict);
        int n = s.length();
        boolean[] f = new boolean[n + 1];
        f[0] = true;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (f[j] && words.contains(s.substring(j, i))) {
                    f[i] = true;
                    break;
                }
            }
        }
        return f[n];
    }
}
cpp
class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> words(wordDict.begin(), wordDict.end());
        int n = s.size();
        bool f[n + 1];
        memset(f, false, sizeof(f));
        f[0] = true;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (f[j] && words.count(s.substr(j, i - j))) {
                    f[i] = true;
                    break;
                }
            }
        }
        return f[n];
    }
};
ts
function wordBreak(s: string, wordDict: string[]): boolean {
    const words = new Set(wordDict);
    const n = s.length;
    const f: boolean[] = new Array(n + 1).fill(false);
    f[0] = true;
    for (let i = 1; i <= n; ++i) {
        for (let j = 0; j < i; ++j) {
            if (f[j] && words.has(s.substring(j, i))) {
                f[i] = true;
                break;
            }
        }
    }
    return f[n];
}
python
class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        words = set(wordDict)
        n = len(s)
        f = [True] + [False] * n
        for i in range(1, n + 1):
            f[i] = any(f[j] and s[j:i] in words for j in range(i))
        return f[n]

方法二:前缀树 + 动态规划

我们先将 wordDict 中的单词存入前缀树中,然后使用动态规划求解。

我们定义 f[i] 表示从字符串 s 的第 i 个字符开始往后拆分,能否拆分成 wordDict 中的单词,初始时 f[n]=true,其余为 false。答案为 f[0]

接下来,我们从大到小枚举 i,对于每个 i,我们从 i 开始往后拆分,如果 s[i:j] 在前缀树中,且 f[j+1]=true,则 f[i]=true

时间复杂度 O(n2),空间复杂度 O(n)。其中 n 为字符串 s 的长度。

java
class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        Trie trie = new Trie();
        for (String w : wordDict) {
            trie.insert(w);
        }
        int n = s.length();
        boolean[] f = new boolean[n + 1];
        f[n] = true;
        for (int i = n - 1; i >= 0; --i) {
            Trie node = trie;
            for (int j = i; j < n; ++j) {
                int k = s.charAt(j) - 'a';
                if (node.children[k] == null) {
                    break;
                }
                node = node.children[k];
                if (node.isEnd && f[j + 1]) {
                    f[i] = true;
                    break;
                }
            }
        }
        return f[0];
    }
}

class Trie {
    Trie[] children = new Trie[26];
    boolean isEnd = false;

    public void insert(String w) {
        Trie node = this;
        for (int i = 0; i < w.length(); ++i) {
            int j = w.charAt(i) - 'a';
            if (node.children[j] == null) {
                node.children[j] = new Trie();
            }
            node = node.children[j];
        }
        node.isEnd = true;
    }
}
cpp
class Trie {
public:
    vector<Trie*> children;
    bool isEnd;
    Trie()
        : children(26)
        , isEnd(false) {}

    void insert(string word) {
        Trie* node = this;
        for (char c : word) {
            c -= 'a';
            if (!node->children[c]) node->children[c] = new Trie();
            node = node->children[c];
        }
        node->isEnd = true;
    }
};

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        Trie trie;
        for (auto& w : wordDict) {
            trie.insert(w);
        }
        int n = s.size();
        vector<bool> f(n + 1);
        f[n] = true;
        for (int i = n - 1; ~i; --i) {
            Trie* node = &trie;
            for (int j = i; j < n; ++j) {
                int k = s[j] - 'a';
                if (!node->children[k]) {
                    break;
                }
                node = node->children[k];
                if (node->isEnd && f[j + 1]) {
                    f[i] = true;
                    break;
                }
            }
        }
        return f[0];
    }
};
ts
function wordBreak(s: string, wordDict: string[]): boolean {
    const trie = new Trie();
    for (const w of wordDict) {
        trie.insert(w);
    }
    const n = s.length;
    const f: boolean[] = new Array(n + 1).fill(false);
    f[n] = true;
    for (let i = n - 1; i >= 0; --i) {
        let node: Trie = trie;
        for (let j = i; j < n; ++j) {
            const k = s.charCodeAt(j) - 97;
            if (!node.children[k]) {
                break;
            }
            node = node.children[k];
            if (node.isEnd && f[j + 1]) {
                f[i] = true;
                break;
            }
        }
    }
    return f[0];
}

class Trie {
    children: Trie[];
    isEnd: boolean;

    constructor() {
        this.children = new Array(26);
        this.isEnd = false;
    }

    insert(w: string): void {
        let node: Trie = this;
        for (const c of w) {
            const i = c.charCodeAt(0) - 97;
            if (!node.children[i]) {
                node.children[i] = new Trie();
            }
            node = node.children[i];
        }
        node.isEnd = true;
    }
}
python
class Trie:
    def __init__(self):
        self.children: List[Trie | None] = [None] * 26
        self.isEnd = False

    def insert(self, w: str):
        node = self
        for c in w:
            idx = ord(c) - ord('a')
            if not node.children[idx]:
                node.children[idx] = Trie()
            node = node.children[idx]
        node.isEnd = True


class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        trie = Trie()
        for w in wordDict:
            trie.insert(w)
        n = len(s)
        f = [False] * (n + 1)
        f[n] = True
        for i in range(n - 1, -1, -1):
            node = trie
            for j in range(i, n):
                idx = ord(s[j]) - ord('a')
                if not node.children[idx]:
                    break
                node = node.children[idx]
                if node.isEnd and f[j + 1]:
                    f[i] = True
                    break
        return f[0]

Released under the MIT License.