Skip to content

33. 搜索旋转排序数组

题目描述

整数数组 nums 按升序排列,数组中的值 互不相同

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2]

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

 

示例 1:

输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4

示例 2:

输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1

示例 3:

输入:nums = [1], target = 0
输出:-1

 

提示:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • nums 中的每个值都 独一无二
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -104 <= target <= 104

方法一:二分查找

我们使用二分,将数组分割成 [left,..mid], [mid+1,..right] 两部分,这时候可以发现,其中有一部分一定是有序的。

因此,我们可以根据有序的那一部分,判断 target 是否在这一部分中:

  • [0,..mid] 范围内的元素构成有序数组:
    • 若满足 nums[0]targetnums[mid],那么我们搜索范围可以缩小为 [left,..mid]
    • 否则,在 [mid+1,..right] 中查找;
  • [mid+1,n1] 范围内的元素构成有序数组:
    • 若满足 nums[mid]<targetnums[n1],那么我们搜索范围可以缩小为 [mid+1,..right]
    • 否则,在 [left,..mid] 中查找。

二分查找终止条件是 leftright,若结束后发现 nums[left]target 不等,说明数组中不存在值为 target 的元素,返回 1,否则返回下标 left

时间复杂度 O(logn),其中 n 是数组 nums 的长度。空间复杂度 O(1)

java
class Solution {
    public int search(int[] nums, int target) {
        int n = nums.length;
        int left = 0, right = n - 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (nums[0] <= nums[mid]) {
                if (nums[0] <= target && target <= nums[mid]) {
                    right = mid;
                } else {
                    left = mid + 1;
                }
            } else {
                if (nums[mid] < target && target <= nums[n - 1]) {
                    left = mid + 1;
                } else {
                    right = mid;
                }
            }
        }
        return nums[left] == target ? left : -1;
    }
}
cpp
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int n = nums.size();
        int left = 0, right = n - 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (nums[0] <= nums[mid]) {
                if (nums[0] <= target && target <= nums[mid])
                    right = mid;
                else
                    left = mid + 1;
            } else {
                if (nums[mid] < target && target <= nums[n - 1])
                    left = mid + 1;
                else
                    right = mid;
            }
        }
        return nums[left] == target ? left : -1;
    }
};
ts
function search(nums: number[], target: number): number {
    const n = nums.length;
    let left = 0,
        right = n - 1;
    while (left < right) {
        const mid = (left + right) >> 1;
        if (nums[0] <= nums[mid]) {
            if (nums[0] <= target && target <= nums[mid]) {
                right = mid;
            } else {
                left = mid + 1;
            }
        } else {
            if (nums[mid] < target && target <= nums[n - 1]) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
    }
    return nums[left] == target ? left : -1;
}
python
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        n = len(nums)
        left, right = 0, n - 1
        while left < right:
            mid = (left + right) >> 1
            if nums[0] <= nums[mid]:
                if nums[0] <= target <= nums[mid]:
                    right = mid
                else:
                    left = mid + 1
            else:
                if nums[mid] < target <= nums[n - 1]:
                    left = mid + 1
                else:
                    right = mid
        return left if nums[left] == target else -1

Released under the MIT License.