Skip to content

72. 编辑距离

题目描述

给你两个单词 word1 和 word2请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

 

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

 

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1word2 由小写英文字母组成

方法一:动态规划

我们定义 f[i][j] 表示将 word1 的前 i 个字符转换成 word2 的前 j 个字符所使用的最少操作数。初始时 f[i][0]=i, f[0][j]=j。其中 i[1,m],j[0,n]

考虑 f[i][j]

  • 如果 word1[i1]=word2[j1],那么我们只需要考虑将 word1 的前 i1 个字符转换成 word2 的前 j1 个字符所使用的最少操作数,因此 f[i][j]=f[i1][j1]
  • 否则,我们可以考虑插入、删除、替换操作,那么 f[i][j]=min(f[i1][j],f[i][j1],f[i1][j1])+1

综上,我们可以得到状态转移方程:

f[i][j]={i,if j=0j,if i=0f[i1][j1],if word1[i1]=word2[j1]min(f[i1][j],f[i][j1],f[i1][j1])+1,otherwise

最后,我们返回 f[m][n] 即可。

时间复杂度 O(m×n),空间复杂度 O(m×n)。其中 mn 分别是 word1word2 的长度。

java
class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length(), n = word2.length();
        int[][] f = new int[m + 1][n + 1];
        for (int j = 1; j <= n; ++j) {
            f[0][j] = j;
        }
        for (int i = 1; i <= m; ++i) {
            f[i][0] = i;
            for (int j = 1; j <= n; ++j) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    f[i][j] = f[i - 1][j - 1];
                } else {
                    f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1;
                }
            }
        }
        return f[m][n];
    }
}
cpp
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        int f[m + 1][n + 1];
        for (int j = 0; j <= n; ++j) {
            f[0][j] = j;
        }
        for (int i = 1; i <= m; ++i) {
            f[i][0] = i;
            for (int j = 1; j <= n; ++j) {
                if (word1[i - 1] == word2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1];
                } else {
                    f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1;
                }
            }
        }
        return f[m][n];
    }
};
ts
function minDistance(word1: string, word2: string): number {
    const m = word1.length;
    const n = word2.length;
    const f: number[][] = Array(m + 1)
        .fill(0)
        .map(() => Array(n + 1).fill(0));
    for (let j = 1; j <= n; ++j) {
        f[0][j] = j;
    }
    for (let i = 1; i <= m; ++i) {
        f[i][0] = i;
        for (let j = 1; j <= n; ++j) {
            if (word1[i - 1] === word2[j - 1]) {
                f[i][j] = f[i - 1][j - 1];
            } else {
                f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
            }
        }
    }
    return f[m][n];
}
python
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m, n = len(word1), len(word2)
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for j in range(1, n + 1):
            f[0][j] = j
        for i, a in enumerate(word1, 1):
            f[i][0] = i
            for j, b in enumerate(word2, 1):
                if a == b:
                    f[i][j] = f[i - 1][j - 1]
                else:
                    f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
        return f[m][n]

Released under the MIT License.