48. 旋转图像
题目描述
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] 输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
提示:
n == matrix.length == matrix[i].length
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
方法一:原地翻转
根据题目要求,我们实际上需要将
我们可以先对矩阵进行上下翻转,即
时间复杂度
java
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n >> 1; ++i) {
for (int j = 0; j < n; ++j) {
int t = matrix[i][j];
matrix[i][j] = matrix[n - i - 1][j];
matrix[n - i - 1][j] = t;
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
int t = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = t;
}
}
}
}
cpp
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n >> 1; ++i) {
for (int j = 0; j < n; ++j) {
swap(matrix[i][j], matrix[n - i - 1][j]);
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
swap(matrix[i][j], matrix[j][i]);
}
}
}
};
ts
/**
Do not return anything, modify matrix in-place instead.
*/
function rotate(matrix: number[][]): void {
matrix.reverse();
for (let i = 0; i < matrix.length; ++i) {
for (let j = 0; j < i; ++j) {
const t = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = t;
}
}
}
python
class Solution:
def rotate(self, matrix: List[List[int]]) -> None:
n = len(matrix)
for i in range(n >> 1):
for j in range(n):
matrix[i][j], matrix[n - i - 1][j] = matrix[n - i - 1][j], matrix[i][j]
for i in range(n):
for j in range(i):
matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]