Skip to content

70. 爬楼梯

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

 

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

 

提示:

  • 1 <= n <= 45

方法一:递推

我们定义 f[i] 表示爬到第 i 阶楼梯的方法数,那么 f[i] 可以由 f[i1]f[i2] 转移而来,即:

f[i]=f[i1]+f[i2]

初始条件为 f[0]=1f[1]=1,即爬到第 0 阶楼梯的方法数为 1,爬到第 1 阶楼梯的方法数也为 1。

答案即为 f[n]

由于 f[i] 只与 f[i1]f[i2] 有关,因此我们可以只用两个变量 ab 来维护当前的方法数,空间复杂度降低为 O(1)

时间复杂度 O(n),空间复杂度 O(1)

java
class Solution {
    public int climbStairs(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
}
cpp
class Solution {
public:
    int climbStairs(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
};
ts
function climbStairs(n: number): number {
    let p = 1;
    let q = 1;
    for (let i = 1; i < n; i++) {
        [p, q] = [q, p + q];
    }
    return q;
}
python
class Solution:
    def climbStairs(self, n: int) -> int:
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return b

方法二:矩阵快速幂加速递推

我们设 Fib(n) 表示一个 1×2 的矩阵 [FnFn1],其中 FnFn1 分别是第 n 个和第 n1 个斐波那契数。

我们希望根据 Fib(n1)=[Fn1Fn2] 推出 Fib(n)。也即是说,我们需要一个矩阵 base,使得 Fib(n1)×base=Fib(n),即:

[Fn1Fn2]×base=[FnFn1]

由于 Fn=Fn1+Fn2,所以矩阵 base 的第一列为:

[11]

第二列为:

[10]

因此有:

[Fn1Fn2]×[1110]=[FnFn1]

我们定义初始矩阵 res=[11],那么 Fn 等于 res 乘以 basen1 的结果矩阵中第一行的第一个元素。使用矩阵快速幂求解即可。

时间复杂度 O(logn),空间复杂度 O(1)

java
class Solution {
    private final int[][] a = {{1, 1}, {1, 0}};

    public int climbStairs(int n) {
        return pow(a, n - 1)[0][0];
    }

    private int[][] mul(int[][] a, int[][] b) {
        int m = a.length, n = b[0].length;
        int[][] c = new int[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < a[0].length; ++k) {
                    c[i][j] += a[i][k] * b[k][j];
                }
            }
        }
        return c;
    }

    private int[][] pow(int[][] a, int n) {
        int[][] res = {{1, 1}, {0, 0}};
        while (n > 0) {
            if ((n & 1) == 1) {
                res = mul(res, a);
            }
            n >>= 1;
            a = mul(a, a);
        }
        return res;
    }
}
cpp
class Solution {
public:
    int climbStairs(int n) {
        vector<vector<long long>> a = {{1, 1}, {1, 0}};
        return pow(a, n - 1)[0][0];
    }

private:
    vector<vector<long long>> mul(vector<vector<long long>>& a, vector<vector<long long>>& b) {
        int m = a.size(), n = b[0].size();
        vector<vector<long long>> res(m, vector<long long>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < a[0].size(); ++k) {
                    res[i][j] += a[i][k] * b[k][j];
                }
            }
        }
        return res;
    }

    vector<vector<long long>> pow(vector<vector<long long>>& a, int n) {
        vector<vector<long long>> res = {{1, 1}, {0, 0}};
        while (n) {
            if (n & 1) {
                res = mul(res, a);
            }
            a = mul(a, a);
            n >>= 1;
        }
        return res;
    }
};
ts
function climbStairs(n: number): number {
    const a = [
        [1, 1],
        [1, 0],
    ];
    return pow(a, n - 1)[0][0];
}

function mul(a: number[][], b: number[][]): number[][] {
    const [m, n] = [a.length, b[0].length];
    const c = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            for (let k = 0; k < a[0].length; ++k) {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    return c;
}

function pow(a: number[][], n: number): number[][] {
    let res = [
        [1, 1],
        [0, 0],
    ];
    while (n) {
        if (n & 1) {
            res = mul(res, a);
        }
        a = mul(a, a);
        n >>= 1;
    }
    return res;
}
python
class Solution:
    def climbStairs(self, n: int) -> int:
        def mul(a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
            m, n = len(a), len(b[0])
            c = [[0] * n for _ in range(m)]
            for i in range(m):
                for j in range(n):
                    for k in range(len(a[0])):
                        c[i][j] = c[i][j] + a[i][k] * b[k][j]
            return c

        def pow(a: List[List[int]], n: int) -> List[List[int]]:
            res = [[1, 1]]
            while n:
                if n & 1:
                    res = mul(res, a)
                n >>= 1
                a = mul(a, a)
            return res

        a = [[1, 1], [1, 0]]
        return pow(a, n - 1)[0][0]

Released under the MIT License.