Skip to content

94. 二叉树的中序遍历

题目描述

给定一个二叉树的根节点 root ,返回 它的 中序 遍历

 

示例 1:

image-20240823105304708
输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

 

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

 

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

方法一:递归遍历

我们先递归左子树,再访问根节点,接着递归右子树。

时间复杂度 O(n),空间复杂度 O(n)。其中 n 是二叉树的节点数,空间复杂度主要取决于递归调用的栈空间。

java
class Solution {
    private List<Integer> ans = new ArrayList<>();

    public List<Integer> inorderTraversal(TreeNode root) {
        dfs(root);
        return ans;
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        dfs(root.left);
        ans.add(root.val);
        dfs(root.right);
    }
}
cpp
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> ans;
        function<void(TreeNode*)> dfs = [&](TreeNode* root) {
            if (!root) {
                return;
            }
            dfs(root->left);
            ans.push_back(root->val);
            dfs(root->right);
        };
        dfs(root);
        return ans;
    }
};
python
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        def dfs(root):
            if root is None:
                return
            dfs(root.left)
            ans.append(root.val)
            dfs(root.right)

        ans = []
        dfs(root)
        return ans

方法二:栈实现非递归遍历

非递归的思路如下:

  1. 定义一个栈 stk
  2. 将树的左节点依次入栈
  3. 左节点为空时,弹出栈顶元素并处理
  4. 重复 2-3 的操作

时间复杂度 O(n),空间复杂度 O(n)。其中 n 是二叉树的节点数,空间复杂度主要取决于栈空间。

java
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        Deque<TreeNode> stk = new ArrayDeque<>();
        while (root != null || !stk.isEmpty()) {
            if (root != null) {
                stk.push(root);
                root = root.left;
            } else {
                root = stk.pop();
                ans.add(root.val);
                root = root.right;
            }
        }
        return ans;
    }
}
cpp
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> ans;
        stack<TreeNode*> stk;
        while (root || stk.size()) {
            if (root) {
                stk.push(root);
                root = root->left;
            } else {
                root = stk.top();
                stk.pop();
                ans.push_back(root->val);
                root = root->right;
            }
        }
        return ans;
    }
};
python
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        ans, stk = [], []
        while root or stk:
            if root:
                stk.append(root)
                root = root.left
            else:
                root = stk.pop()
                ans.append(root.val)
                root = root.right
        return ans
ts
function inorderTraversal(root: TreeNode | null): number[] {
    const stk: TreeNode[] = [];
    const ans: number[] = [];
    while (root || stk.length > 0) {
        if (root) {
            stk.push(root);
            root = root.left;
        } else {
            root = stk.pop();
            ans.push(root.val);
            root = root.right;
        }
    }
    return ans;
}

方法三:Morris 实现中序遍历

Morris 遍历无需使用栈,空间复杂度为 O(1)。核心思想是:

遍历二叉树节点,

  1. 若当前节点 root 的左子树为空,将当前节点值添加至结果列表 ans 中,并将当前节点更新为 root.right
  2. 若当前节点 root 的左子树不为空,找到左子树的最右节点 prev(也即是 root 节点在中序遍历下的前驱节点):
    • 若前驱节点 prev 的右子树为空,将前驱节点的右子树指向当前节点 root,并将当前节点更新为 root.left
    • 若前驱节点 prev 的右子树不为空,将当前节点值添加至结果列表 ans 中,然后将前驱节点右子树指向空(即解除 prev 与 root 的指向关系),并将当前节点更新为 root.right
  3. 循环以上步骤,直至二叉树节点为空,遍历结束。

时间复杂度 O(n),空间复杂度 O(1)。其中 n 是二叉树的节点数。

java
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        while (root != null) {
            if (root.left == null) {
                ans.add(root.val);
                root = root.right;
            } else {
                TreeNode prev = root.left;
                while (prev.right != null && prev.right != root) {
                    prev = prev.right;
                }
                if (prev.right == null) {
                    prev.right = root;
                    root = root.left;
                } else {
                    ans.add(root.val);
                    prev.right = null;
                    root = root.right;
                }
            }
        }
        return ans;
    }
}
cpp
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> ans;
        while (root) {
            if (!root->left) {
                ans.push_back(root->val);
                root = root->right;
            } else {
                TreeNode* prev = root->left;
                while (prev->right && prev->right != root) {
                    prev = prev->right;
                }
                if (!prev->right) {
                    prev->right = root;
                    root = root->left;
                } else {
                    ans.push_back(root->val);
                    prev->right = nullptr;
                    root = root->right;
                }
            }
        }
        return ans;
    }
};
ts
function inorderTraversal(root: TreeNode | null): number[] {
    const ans: number[] = [];
    while (root) {
        if (!root.left) {
            ans.push(root.val);
            root = root.right;
        } else {
            let prev = root.left;
            while (prev.right && prev.right != root) {
                prev = prev.right;
            }
            if (!prev.right) {
                prev.right = root;
                root = root.left;
            } else {
                ans.push(root.val);
                prev.right = null;
                root = root.right;
            }
        }
    }
    return ans;
}
python
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        ans = []
        while root:
            if root.left is None:
                ans.append(root.val)
                root = root.right
            else:
                prev = root.left
                while prev.right and prev.right != root:
                    prev = prev.right
                if prev.right is None:
                    prev.right = root
                    root = root.left
                else:
                    ans.append(root.val)
                    prev.right = None
                    root = root.right
        return ans

Released under the MIT License.