142. 环形链表 II
题目描述
给定一个链表的头节点 head
,返回链表开始入环的第一个节点。 如果链表无环,则返回 null
。
如果链表中有某个节点,可以通过连续跟踪 next
指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos
来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos
是 -1
,则在该链表中没有环。注意:pos
不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1 输出:返回索引为 1 的链表节点 解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0 输出:返回索引为 0 的链表节点 解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1 输出:返回 null 解释:链表中没有环。
提示:
- 链表中节点的数目范围在范围
[0, 104]
内 -105 <= Node.val <= 105
pos
的值为-1
或者链表中的一个有效索引
进阶:你是否可以使用 O(1)
空间解决此题?
方法一:快慢指针
我们先利用快慢指针判断链表是否有环,如果有环的话,快慢指针一定会相遇,且相遇的节点一定在环中。
如果没有环,快指针会先到达链表尾部,直接返回 null
即可。
如果有环,我们再定义一个答案指针
为什么这样能找到环的入口节点呢?
我们不妨假设链表头节点到环入口的距离为
由于快指针速度是慢指针的
也即是说,如果我们定义一个答案指针
时间复杂度
java
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast = head, slow = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) {
ListNode ans = head;
while (ans != slow) {
ans = ans.next;
slow = slow.next;
}
return ans;
}
}
return null;
}
}
cpp
class Solution {
public:
ListNode* detectCycle(ListNode* head) {
ListNode* fast = head;
ListNode* slow = head;
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
if (slow == fast) {
ListNode* ans = head;
while (ans != slow) {
ans = ans->next;
slow = slow->next;
}
return ans;
}
}
return nullptr;
}
};
ts
function detectCycle(head: ListNode | null): ListNode | null {
let [slow, fast] = [head, head];
while (fast && fast.next) {
slow = slow.next;
fast = fast.next.next;
if (slow === fast) {
let ans = head;
while (ans !== slow) {
ans = ans.next;
slow = slow.next;
}
return ans;
}
}
return null;
}
python
class Solution:
def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
fast = slow = head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if slow == fast:
ans = head
while ans != slow:
ans = ans.next
slow = slow.next
return ans