Skip to content

221. 最大正方形

题目描述

在一个由 '0''1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:

image-20240823111621650
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

示例 2:

image-20240823111636014
输入:matrix = [["0","1"],["1","0"]]
输出:1

示例 3:

输入:matrix = [["0"]]
输出:0

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j]'0''1'

方法一:动态规划

我们定义 dp[i+1][j+1] 表示以下标 (i,j) 作为正方形右下角的最大正方形边长。答案为所有 dp[i+1][j+1] 中的最大值。

状态转移方程为:

dp[i+1][j+1]={0if matrix[i][j]=0min(dp[i][j],dp[i][j+1],dp[i+1][j])+1if matrix[i][j]=1

时间复杂度 O(m×n),空间复杂度 O(m×n)。其中 mn 分别是矩阵的行数和列数。

假设我们要计算 dp[4][4],此时matrix[3][3]等于1,我们分别往上和往左进行延伸,直到碰到一个0为止,上面的长度为1,左边的长度为3,dp[3][3]等于1,那么本次的瓶颈在于这三者的最小值,即min(1,1,3),也就是1,那么dp[3][3]就等于min(1,1,3)+1

image-20240814140347623

java
class Solution {
    public int maximalSquare(char[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        int[][] dp = new int[m + 1][n + 1];
        int mx = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    dp[i + 1][j + 1] = Math.min(Math.min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
                    mx = Math.max(mx, dp[i + 1][j + 1]);
                }
            }
        }
        return mx * mx;
    }
}
cpp
class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        int mx = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    dp[i + 1][j + 1] = min(min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
                    mx = max(mx, dp[i + 1][j + 1]);
                }
            }
        }
        return mx * mx;
    }
};
python
class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m, n = len(matrix), len(matrix[0])
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        mx = 0
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == '1':
                    dp[i + 1][j + 1] = min(dp[i][j + 1], dp[i + 1][j], dp[i][j]) + 1
                    mx = max(mx, dp[i + 1][j + 1])
        return mx * mx

Released under the MIT License.