Skip to content

53. 最大子数组和

题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

 

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

 

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

 

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

方法一:动态规划

我们定义 f[i] 表示以元素 nums[i] 为结尾的连续子数组的最大和,初始时 f[0]=nums[0],那么最终我们要求的答案即为 max0i<nf[i]

考虑 f[i],其中 i1,它的状态转移方程为:

f[i]=max{f[i1]+nums[i],nums[i]}

也即:

f[i]=max{f[i1],0}+nums[i]

由于 f[i] 只与 f[i1] 有关系,因此我们可以只用一个变量 f 来维护对于当前 f[i] 的值是多少,然后进行状态转移即可。答案为 max0i<nf

时间复杂度 O(n),其中 n 为数组 nums 的长度。我们只需要遍历一遍数组即可求得答案。空间复杂度 O(1),我们只需要常数空间存放若干变量。

java
class Solution {
    public int maxSubArray(int[] nums) {
        int ans = nums[0];
        for (int i = 1, f = nums[0]; i < nums.length; ++i) {
            f = Math.max(f, 0) + nums[i];
            ans = Math.max(ans, f);
        }
        return ans;
    }
}
cpp
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans = nums[0], f = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            f = max(f, 0) + nums[i];
            ans = max(ans, f);
        }
        return ans;
    }
};
ts
function maxSubArray(nums: number[]): number {
    let [ans, f] = [nums[0], nums[0]];
    for (let i = 1; i < nums.length; ++i) {
        f = Math.max(f, 0) + nums[i];
        ans = Math.max(ans, f);
    }
    return ans;
}
python
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        ans = f = nums[0]
        for x in nums[1:]:
            f = max(f, 0) + x
            ans = max(ans, f)
        return ans

方法二:分治法

java
class Solution {
    public int maxSubArray(int[] nums) {
        return maxSub(nums, 0, nums.length - 1);
    }

    private int maxSub(int[] nums, int left, int right) {
        if (left == right) {
            return nums[left];
        }
        int mid = (left + right) >>> 1;
        int lsum = maxSub(nums, left, mid);
        int rsum = maxSub(nums, mid + 1, right);
        return Math.max(Math.max(lsum, rsum), crossMaxSub(nums, left, mid, right));
    }

    private int crossMaxSub(int[] nums, int left, int mid, int right) {
        int lsum = 0, rsum = 0;
        int lmx = Integer.MIN_VALUE, rmx = Integer.MIN_VALUE;
        for (int i = mid; i >= left; --i) {
            lsum += nums[i];
            lmx = Math.max(lmx, lsum);
        }
        for (int i = mid + 1; i <= right; ++i) {
            rsum += nums[i];
            rmx = Math.max(rmx, rsum);
        }
        return lmx + rmx;
    }
}
python
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        def crossMaxSub(nums, left, mid, right):
            lsum = rsum = 0
            lmx = rmx = -inf
            for i in range(mid, left - 1, -1):
                lsum += nums[i]
                lmx = max(lmx, lsum)
            for i in range(mid + 1, right + 1):
                rsum += nums[i]
                rmx = max(rmx, rsum)
            return lmx + rmx

        def maxSub(nums, left, right):
            if left == right:
                return nums[left]
            mid = (left + right) >> 1
            lsum = maxSub(nums, left, mid)
            rsum = maxSub(nums, mid + 1, right)
            csum = crossMaxSub(nums, left, mid, right)
            return max(lsum, rsum, csum)

        left, right = 0, len(nums) - 1
        return maxSub(nums, left, right)

Released under the MIT License.