Skip to content

209. 长度最小的子数组

题目描述

给定一个含有 n 个正整数的数组和一个正整数 target

找出该数组中满足其总和大于等于target的长度最小的 子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度如果不存在符合条件的子数组,返回 0

 

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

 

提示:

  • 1 <= target <= 109
  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

 

进阶:

  • 如果你已经实现O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。

方法一:前缀和 + 二分查找

我们先预处理出数组 nums 的前缀和数组 s,其中 s[i] 表示数组 numsi 项元素之和。由于数组 nums 中的元素都是正整数,因此数组 s 也是单调递增的。另外,我们初始化答案 ans=n+1,其中 n 为数组 nums 的长度。

接下来,我们遍历前缀和数组 s,对于其中的每个元素 s[i],我们可以通过二分查找的方法找到满足 s[j]s[i]+target 的最小下标 j,如果 jn,则说明存在满足条件的子数组,我们可以更新答案,即 ans=min(ans,ji)

最后,如果 ansn,则说明存在满足条件的子数组,返回 ans,否则返回 0

时间复杂度 O(n×logn),空间复杂度 O(n)。其中 n 为数组 nums 的长度。

java
class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int n = nums.length;
        long[] s = new long[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        int ans = n + 1;
        for (int i = 0; i <= n; ++i) {
            int j = search(s, s[i] + target);
            if (j <= n) {
                ans = Math.min(ans, j - i);
            }
        }
        return ans <= n ? ans : 0;
    }

    private int search(long[] nums, long x) {
        int l = 0, r = nums.length;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (nums[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l;
    }
}
cpp
class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int n = nums.size();
        vector<long long> s(n + 1);
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        int ans = n + 1;
        for (int i = 0; i <= n; ++i) {
            int j = lower_bound(s.begin(), s.end(), s[i] + target) - s.begin();
            if (j <= n) {
                ans = min(ans, j - i);
            }
        }
        return ans <= n ? ans : 0;
    }
};
ts
function minSubArrayLen(target: number, nums: number[]): number {
    const n = nums.length;
    const s: number[] = new Array(n + 1).fill(0);
    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] + nums[i];
    }
    let ans = n + 1;
    const search = (x: number) => {
        let l = 0;
        let r = n + 1;
        while (l < r) {
            const mid = (l + r) >>> 1;
            if (s[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l;
    };
    for (let i = 0; i <= n; ++i) {
        const j = search(s[i] + target);
        if (j <= n) {
            ans = Math.min(ans, j - i);
        }
    }
    return ans === n + 1 ? 0 : ans;
}
python
class Solution:
    def minSubArrayLen(self, target: int, nums: List[int]) -> int:
        n = len(nums)
        s = list(accumulate(nums, initial=0))
        ans = n + 1
        for i, x in enumerate(s):
            j = bisect_left(s, x + target)
            if j <= n:
                ans = min(ans, j - i)
        return ans if ans <= n else 0

方法二:双指针

我们注意到,数组 nums 中的元素均为正整数,我们可以考虑使用双指针来维护一个滑动窗口。

具体地,我们定义两个指针 lr 分别表示滑动窗口的左边界和右边界,用一个变量 s 代表滑动窗口中的元素和。

在每一步操作中,我们移动右指针 r,使得滑动窗口中加入一个元素,如果此时 starget,我们就更新最小长度 ans=min(ans,rl+1,并将左指针 l 循环向右移动,直至有 s<target

最后,如果最小长度 ans 仍为初始值,我们就返回 0,否则返回 ans

时间复杂度 O(n),其中 n 为数组 nums 的长度。空间复杂度 O(1)

java
class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int l = 0, n = nums.length;
        long s = 0;
        int ans = n + 1;
        for (int r = 0; r < n; ++r) {
            s += nums[r];
            while (s >= target) {
                ans = Math.min(ans, r - l + 1);
                s -= nums[l++];
            }
        }
        return ans > n ? 0 : ans;
    }
}
cpp
class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int l = 0, n = nums.size();
        long long s = 0;
        int ans = n + 1;
        for (int r = 0; r < n; ++r) {
            s += nums[r];
            while (s >= target) {
                ans = min(ans, r - l + 1);
                s -= nums[l++];
            }
        }
        return ans > n ? 0 : ans;
    }
};
ts
function minSubArrayLen(target: number, nums: number[]): number {
    const n = nums.length;
    let [s, ans] = [0, n + 1];
    for (let l = 0, r = 0; r < n; ++r) {
        s += nums[r];
        while (s >= target) {
            ans = Math.min(ans, r - l + 1);
            s -= nums[l++];
        }
    }
    return ans > n ? 0 : ans;
}
python
class Solution:
    def minSubArrayLen(self, target: int, nums: List[int]) -> int:
        l = s = 0
        ans = inf
        for r, x in enumerate(nums):
            s += x
            while s >= target:
                ans = min(ans, r - l + 1)
                s -= nums[l]
                l += 1
        return 0 if ans == inf else ans

Released under the MIT License.