Skip to content

62. 不同路径

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 

示例 1:

image-20240823104943196
输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

 

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

方法一:动态规划

我们定义 f[i][j] 表示从左上角走到 (i,j) 的路径数量,初始时 f[0][0]=1,答案为 f[m1][n1]

考虑 f[i][j]

  • 如果 i>0,那么 f[i][j] 可以从 f[i1][j] 走一步到达,因此 f[i][j]=f[i][j]+f[i1][j]
  • 如果 j>0,那么 f[i][j] 可以从 f[i][j1] 走一步到达,因此 f[i][j]=f[i][j]+f[i][j1]

因此,我们有如下的状态转移方程:

f[i][j]={1i=0,j=0f[i1][j]+f[i][j1]otherwise

最终的答案即为 f[m1][n1]

时间复杂度 O(m×n),空间复杂度 O(m×n)。其中 mn 分别是网格的行数和列数。

我们注意到 f[i][j] 仅与 f[i1][j]f[i][j1] 有关,因此我们优化掉第一维空间,仅保留第二维空间,得到时间复杂度 O(m×n),空间复杂度 O(n) 的实现。

java
class Solution {
    public int uniquePaths(int m, int n) {
        var f = new int[m][n];
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i > 0) {
                    f[i][j] += f[i - 1][j];
                }
                if (j > 0) {
                    f[i][j] += f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
}
cpp
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n));
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i) {
                    f[i][j] += f[i - 1][j];
                }
                if (j) {
                    f[i][j] += f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
};
ts
function uniquePaths(m: number, n: number): number {
    const f: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    f[0][0] = 1;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i > 0) {
                f[i][j] += f[i - 1][j];
            }
            if (j > 0) {
                f[i][j] += f[i][j - 1];
            }
        }
    }
    return f[m - 1][n - 1];
}
python
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [[0] * n for _ in range(m)]
        f[0][0] = 1
        for i in range(m):
            for j in range(n):
                if i:
                    f[i][j] += f[i - 1][j]
                if j:
                    f[i][j] += f[i][j - 1]
        return f[-1][-1]

方法二

java
class Solution {
    public int uniquePaths(int m, int n) {
        var f = new int[m][n];
        for (var g : f) {
            Arrays.fill(g, 1);
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; j++) {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        return f[m - 1][n - 1];
    }
}
cpp
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n, 1));
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        return f[m - 1][n - 1];
    }
};
ts
function uniquePaths(m: number, n: number): number {
    const f: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(1));
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    }
    return f[m - 1][n - 1];
}
python
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [[1] * n for _ in range(m)]
        for i in range(1, m):
            for j in range(1, n):
                f[i][j] = f[i - 1][j] + f[i][j - 1]
        return f[-1][-1]

方法三

java
class Solution {
    public int uniquePaths(int m, int n) {
        int[] f = new int[n];
        Arrays.fill(f, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[j] += f[j - 1];
            }
        }
        return f[n - 1];
    }
}
cpp
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> f(n, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[j] += f[j - 1];
            }
        }
        return f[n - 1];
    }
};
ts
function uniquePaths(m: number, n: number): number {
    const f: number[] = Array(n).fill(1);
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[j] += f[j - 1];
        }
    }
    return f[n - 1];
}
python
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [1] * n
        for _ in range(1, m):
            for j in range(1, n):
                f[j] += f[j - 1]
        return f[-1]

Released under the MIT License.