105. 从前序与中序遍历序列构造二叉树
题目描述
给定两个整数数组 preorder
和 inorder
,其中 preorder
是二叉树的先序遍历, inorder
是同一棵树的中序遍历,请构造二叉树并返回其根节点。
示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7] 输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1] 输出: [-1]
提示:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
和inorder
均 无重复 元素inorder
均出现在preorder
preorder
保证 为二叉树的前序遍历序列inorder
保证 为二叉树的中序遍历序列
方法一:哈希表 + 递归
前序序列的第一个节点
通过左右子树的区间,可以计算出左、右子树节点的个数,假设为
因此,我们设计一个函数
函数
- 如果
,说明没有节点,返回空节点。 - 取出前序序列的第一个节点
作为根节点,然后利用哈希表 找到根节点在中序序列中的位置 ,那么左子树的节点个数为 ,右子树的节点个数为 。 - 递归构造左子树
和右子树 。 - 最后返回以
为根节点且左右子树分别为 和 的二叉树。
时间复杂度
java
class Solution {
private int[] preorder;
private Map<Integer, Integer> d = new HashMap<>();
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
this.preorder = preorder;
for (int i = 0; i < n; ++i) {
d.put(inorder[i], i);
}
return dfs(0, 0, n);
}
private TreeNode dfs(int i, int j, int n) {
if (n <= 0) {
return null;
}
int v = preorder[i];
int k = d.get(v);
TreeNode l = dfs(i + 1, j, k - j);
TreeNode r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
}
}
cpp
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n = preorder.size();
unordered_map<int, int> d;
for (int i = 0; i < n; ++i) {
d[inorder[i]] = i;
}
function<TreeNode*(int, int, int)> dfs = [&](int i, int j, int n) -> TreeNode* {
if (n <= 0) {
return nullptr;
}
int v = preorder[i];
int k = d[v];
TreeNode* l = dfs(i + 1, j, k - j);
TreeNode* r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
};
ts
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
const d: Map<number, number> = new Map();
const n = inorder.length;
for (let i = 0; i < n; ++i) {
d.set(inorder[i], i);
}
const dfs = (i: number, j: number, n: number): TreeNode | null => {
if (n <= 0) {
return null;
}
const v = preorder[i];
const k = d.get(v)!;
const l = dfs(i + 1, j, k - j);
const r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
python
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
def dfs(i: int, j: int, n: int) -> Optional[TreeNode]:
if n <= 0:
return None
v = preorder[i]
k = d[v]
l = dfs(i + 1, j, k - j)
r = dfs(i + 1 + k - j, k + 1, n - k + j - 1)
return TreeNode(v, l, r)
d = {v: i for i, v in enumerate(inorder)}
return dfs(0, 0, len(preorder))
如果题目中给定的节点值存在重复,那么我们只需要记录每个节点值出现的所有位置,然后递归构建出所有可能的二叉树即可。
java
class Solution {
private List<Integer> preorder;
private Map<Integer, List<Integer>> d = new HashMap<>();
public List<TreeNode> getBinaryTrees(List<Integer> preOrder, List<Integer> inOrder) {
int n = preOrder.size();
this.preorder = preOrder;
for (int i = 0; i < n; ++i) {
d.computeIfAbsent(inOrder.get(i), k -> new ArrayList<>()).add(i);
}
return dfs(0, 0, n);
}
private List<TreeNode> dfs(int i, int j, int n) {
List<TreeNode> ans = new ArrayList<>();
if (n <= 0) {
ans.add(null);
return ans;
}
int v = preorder.get(i);
for (int k : d.get(v)) {
if (k >= j && k < j + n) {
for (TreeNode l : dfs(i + 1, j, k - j)) {
for (TreeNode r : dfs(i + 1 + k - j, k + 1, n - 1 - (k - j))) {
ans.add(new TreeNode(v, l, r));
}
}
}
}
return ans;
}
}
cpp
class Solution {
public:
vector<TreeNode*> getBinaryTrees(vector<int>& preOrder, vector<int>& inOrder) {
int n = inOrder.size();
unordered_map<int, vector<int>> d;
for (int i = 0; i < n; ++i) {
d[inOrder[i]].push_back(i);
}
function<vector<TreeNode*>(int, int, int)> dfs = [&](int i, int j, int n) -> vector<TreeNode*> {
vector<TreeNode*> ans;
if (n <= 0) {
ans.push_back(nullptr);
return ans;
}
int v = preOrder[i];
for (int k : d[v]) {
if (k >= j && k < j + n) {
auto lefts = dfs(i + 1, j, k - j);
auto rights = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
for (TreeNode* l : lefts) {
for (TreeNode* r : rights) {
TreeNode* node = new TreeNode(v);
node->left = l;
node->right = r;
ans.push_back(node);
}
}
}
}
return ans;
};
return dfs(0, 0, n);
}
};
python
class Solution:
def getBinaryTrees(self, preOrder: List[int], inOrder: List[int]) -> List[TreeNode]:
def dfs(i: int, j: int, n: int) -> List[TreeNode]:
if n <= 0:
return [None]
v = preOrder[i]
ans = []
for k in d[v]:
if j <= k < j + n:
for l in dfs(i + 1, j, k - j):
for r in dfs(i + 1 + k - j, k + 1, n - 1 - (k - j)):
ans.append(TreeNode(v, l, r))
return ans
d = defaultdict(list)
for i, x in enumerate(inOrder):
d[x].append(i)
return dfs(0, 0, len(preOrder))