64. 最小路径和
题目描述
给定一个包含非负整数的 m x n
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]] 输出:7 解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]] 输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
方法一:动态规划
我们定义
考虑
- 如果
,那么 ; - 如果
,那么 ; - 如果
且 ,那么 。
最后返回
时间复杂度
java
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] f = new int[m][n];
f[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (int j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}
}
cpp
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int f[m][n];
f[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (int j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}
};
ts
function minPathSum(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = grid[0][0];
for (let i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (let j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}
python
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
f = [[0] * n for _ in range(m)]
f[0][0] = grid[0][0]
for i in range(1, m):
f[i][0] = f[i - 1][0] + grid[i][0]
for j in range(1, n):
f[0][j] = f[0][j - 1] + grid[0][j]
for i in range(1, m):
for j in range(1, n):
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j]
return f[-1][-1]