300. 最长递增子序列
题目描述
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
进阶:
- 你能将算法的时间复杂度降低到
O(n log(n))
吗?
方法一:动态规划
我们定义
对于
最后的答案即为
时间复杂度
算法过程演示:
java
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] f = new int[n];
Arrays.fill(f, 1);
int ans = 1;
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
f[i] = Math.max(f[i], f[j] + 1);
}
}
ans = Math.max(ans, f[i]);
}
return ans;
}
}
cpp
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> f(n, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
f[i] = max(f[i], f[j] + 1);
}
}
}
return *max_element(f.begin(), f.end());
}
};
ts
function lengthOfLIS(nums: number[]): number {
const n = nums.length;
const f: number[] = new Array(n).fill(1);
for (let i = 1; i < n; ++i) {
for (let j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
f[i] = Math.max(f[i], f[j] + 1);
}
}
}
return Math.max(...f);
}
python
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
f = [1] * n
for i in range(1, n):
for j in range(i):
if nums[j] < nums[i]:
f[i] = max(f[i], f[j] + 1)
return max(f)
方法二:离散化 + 树状数组
我们将数组中的元素离散化,然后使用树状数组维护不大于某个元素的最长递增子序列的长度。
遍历数组中的每个元素
遍历完数组中的所有元素,即可得到答案。
时间复杂度
java
class Solution {
public int lengthOfLIS(int[] nums) {
int[] s = nums.clone();
Arrays.sort(s);
int m = 0;
int n = s.length;
for (int i = 0; i < n; ++i) {
if (i == 0 || s[i] != s[i - 1]) {
s[m++] = s[i];
}
}
BinaryIndexedTree tree = new BinaryIndexedTree(m);
for (int x : nums) {
x = search(s, x, m);
int t = tree.query(x - 1) + 1;
tree.update(x, t);
}
return tree.query(m);
}
private int search(int[] nums, int x, int r) {
int l = 0;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l + 1;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int v) {
while (x <= n) {
c[x] = Math.max(c[x], v);
x += x & -x;
}
}
public int query(int x) {
int mx = 0;
while (x > 0) {
mx = Math.max(mx, c[x]);
x -= x & -x;
}
return mx;
}
}
cpp
class BinaryIndexedTree {
public:
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) {}
void update(int x, int v) {
while (x <= n) {
c[x] = max(c[x], v);
x += x & -x;
}
}
int query(int x) {
int mx = 0;
while (x) {
mx = max(mx, c[x]);
x -= x & -x;
}
return mx;
}
private:
int n;
vector<int> c;
};
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> s = nums;
sort(s.begin(), s.end());
s.erase(unique(s.begin(), s.end()), s.end());
BinaryIndexedTree tree(s.size());
for (int x : nums) {
x = lower_bound(s.begin(), s.end(), x) - s.begin() + 1;
int t = tree.query(x - 1) + 1;
tree.update(x, t);
}
return tree.query(s.size());
}
};
ts
class BinaryIndexedTree {
private n: number;
private c: number[];
constructor(n: number) {
this.n = n;
this.c = new Array(n + 1).fill(0);
}
update(x: number, v: number) {
while (x <= this.n) {
this.c[x] = Math.max(this.c[x], v);
x += x & -x;
}
}
query(x: number): number {
let mx = 0;
while (x) {
mx = Math.max(mx, this.c[x]);
x -= x & -x;
}
return mx;
}
}
function lengthOfLIS(nums: number[]): number {
const s = [...new Set(nums)].sort((a, b) => a - b);
const m = s.length;
const tree = new BinaryIndexedTree(m);
for (let x of nums) {
x = search(s, x);
const t = tree.query(x - 1) + 1;
tree.update(x, t);
}
return tree.query(m);
}
function search(nums: number[], x: number): number {
let l = 0,
r = nums.length - 1;
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l + 1;
}
python
class BinaryIndexedTree:
def __init__(self, n: int):
self.n = n
self.c = [0] * (n + 1)
def update(self, x: int, v: int):
while x <= self.n:
self.c[x] = max(self.c[x], v)
x += x & -x
def query(self, x: int) -> int:
mx = 0
while x:
mx = max(mx, self.c[x])
x -= x & -x
return mx
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
s = sorted(set(nums))
m = len(s)
tree = BinaryIndexedTree(m)
for x in nums:
x = bisect_left(s, x) + 1
t = tree.query(x - 1) + 1
tree.update(x, t)
return tree.query(m)