Skip to content

1143. 最长公共子序列

题目描述

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1text2 仅由小写英文字符组成。

方法一:动态规划

我们定义 f[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列的长度。那么答案为 f[m][n],其中 mn 分别为 text1text2 的长度。

如果 text1 的第 i 个字符和 text2 的第 j 个字符相同,则 f[i][j]=f[i1][j1]+1;如果 text1 的第 i 个字符和 text2 的第 j 个字符不同,则 f[i][j]=max(f[i1][j],f[i][j1])。即状态转移方程为:

f[i][j]={f[i1][j1]+1,text1[i1]=text2[j1]max(f[i1][j],f[i][j1]),text1[i1]text2[j1]

时间复杂度 O(m×n),空间复杂度 O(m×n)。其中 mn 分别为 text1text2 的长度。

java
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] f = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                } else {
                    f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
                }
            }
        }
        return f[m][n];
    }
}
cpp
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size(), n = text2.size();
        int f[m + 1][n + 1];
        memset(f, 0, sizeof f);
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                } else {
                    f[i][j] = max(f[i - 1][j], f[i][j - 1]);
                }
            }
        }
        return f[m][n];
    }
};
ts
function longestCommonSubsequence(text1: string, text2: string): number {
    const m = text1.length;
    const n = text2.length;
    const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            if (text1[i - 1] === text2[j - 1]) {
                f[i][j] = f[i - 1][j - 1] + 1;
            } else {
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
            }
        }
    }
    return f[m][n];
}
python
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    f[i][j] = f[i - 1][j - 1] + 1
                else:
                    f[i][j] = max(f[i - 1][j], f[i][j - 1])
        return f[m][n]

Released under the MIT License.